
[Jeyaseelan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[2066-2071]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Resolving large and Complex Matrix Factorization Problem using Cloud Platform

as a Service
R.Jeyaseelan*1, N.Pandeeswari2, Dr. P.Ganeshkumar3

*1 PG Scholar, 2Assistant Professor, 3Professor, Department of Information Technology,

PSNA College of Engineering and Technology, Dindigul, India
Jai.seelan98@gmail.com

Abstract
 Cloud computing enables the resource constrained clients lacks economically, to use the huge computational

power of cloud resources to outsource their complex computational tasks. However, outsourcing original input to the

public cloud causes severe anxiety over security risks. The input/output privacy has to be maintained and also, proof

has to be generated to verify the result against the malicious cloud server.The matrix factorization (MF) which requires

enormous amount of resources to complete its task; is pretty common in engineering and economics computational

task such as text mining and analysis. The proposed scheme is motivated to design a secure, resilient and efficient

outsourcing of MF to the public cloud server. The concept behind defending the input matrix is by applying the

transposition and permutations on the original matrix to acquire encrypted matrix. Then, the result returned from the

cloud is decrypted and proof verification is done to ensure the correctness of cloud server. This paper exhibits that the

how securely and efficiently proposed protocol outsources the MF problem onto the cloud and then verifying the result

against malicious cloud server. Extensive theoretical and experimental analysis shows that this protocol is extremely

efficient and widely applicable for practical use.

Keywords: Cloud computing, matrix factorization, robust cheating resistance, secure outsourcing, Monte carlo

verification

 Introduction
Cloud computing is the recent innovative

technology is defined as [1] providing on demand

network access to a large pool of computing platform

deployed with greater efficiency and little

management overhead. With the efficient computing

paradigm, the clients’ lacks due to the limited

computational resources are encouraged to utilize the

cloud computing utility. Instead of setting up their own

computing platform with huge amount of resources,

the clients can utilize the computing platform provided

through one of the cloud services, Platform as a service

(PaaS) on pay per use manner. Despite with the

beneficial services, outsourcing client’s original

information to the malicious cloud server may bring

security risks and challenges [1]. Before outsourcing

original information to the public cloud, the original

information has to be transferred to its encrypted

version. Since the large scale matrix factorization

problem is computationally complex [3] to solve with

restricted amount of resources. The proposed paper

aims to outsource the MF problem into the public

cloud to use the on demand computing platform with

greater amount of resources. And also, it is significant

to ensure the input/output privacy. The original input

matrix protected by doing transposition and

permutations. Then the encrypted matrix is forwarded

to the cloud server. The result come back from the

cloud server is decrypted at client side. Due to the

openness of cloud computing platform, result

produced by cloud server is not yet ensured as correct.

Rather, the computation inside cloud is not transparent

[4] and no guarantee to the quality of the

computational result. In addition, some accidental

reasons such as [1] software bugs and hardware

failures may produce false computation result.

Consequently, to necessitate the correctness of the

computing utility, it is optimal to ensure the

correctness of result. The proposed work contributes

to design a protocol which is secure, robust and

efficient to outsource the MF problem to the public

cloud. This protocol design has four phases specified

in order namely key generation, MF encryption, MF

decryption, and result verification. Key generation

phase is used to generate a secret key for every

[Jeyaseelan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[2066-2071]

instance of matrix. The second phase, MF encryption

is to transfer the original matrix into encrypted matrix

with the help of the generated secret key. The third

phase, MF decryption is to transfer the result which is

in decrypted form to original form. The MF encryption

and decryption is done at client side only. The fourth

phase is result verification, which involves

multiplying the decrypted factor matrices and verifies

the result with original input matrix. The cloud

computing utility can be able to work [1] with the

encrypted input value. So, the malicious attacker

cannot observe any details about user information.

 CHALLENGES. The following are some of

the notable challenges outsourcing computational

problem to the public service provider. Client’s

input/output data privacy is the first challenge. The

outsourced computational problems and the results to

these problems often contain sensitive information. To

solve these problem means user to hide the original

data from the cloud, client needs to encrypt their data

before outsourcing and decrypt the returned result from

the cloud after outsourcing.

The second challenge is the verification of the result

returned by the cloud, because the cloud may be return

the incorrect value. The outsourcing factorization

protocol should satisfy some aspects: secure,

verifiable, and efficient.

MAIN CONTRIBUTIONS. This paper

addresses the issue of how to outsource MF to a remote

malicious cloud server while ensuring correctness,

maintaining data input/output privacy, realizing result

verifiability, and improving computational efficiency.

matrix multiplication and matrix factorization of

square matrices are essentially the same problem. An

important challenge in encrypting the input matrix M

is therefore to avoid multiplying the original matrix M

with general matrices, for avoiding a complexity that

is the same as inverting M itself. By applying

permutation functions, this paper describes a way of

multiplying M with special matrices, where matrix

product can be computed in L(n2) time. Besides, the

challenge in the result verification step is also to avoid

general matrix multiplication, since the validity of a

returned matrix can be easily checked by taking a

product of that matrix with the original input M, and

check whether an identity matrix is obtained. By

introducing Monte Carlo verification algorithm, the

proposed protocol is able to verify the correctness of

the returned result in L(n2) time. Based on permutation

technique and Monte Carlo technique, the client can

reduce its original L(n2.373) work to L(n2) work by

outsourcing MF to a cloud. Moreover, experimental

evaluation is also provided to show that the proposed

protocol is able to allow the client to outsource MF to

a cloud and gain substantial computation savings.

 ORGANIZATION. This paper also

proceeds as, introduces some essential preliminaries.

we describe our protocol with detailed techniques.

And give some related analysis and performance

evaluation,

SECURE MF OUTSOURCE SYSTEM MODEL

System Construction
System Model. We consider the secure MF

out-sourcing system model, as illustrated in above

diagram client with low computational power wants to

outsource the original MF to a cloud service provider,

who has massive computational power and special

software’s. In order to protect input privacy, the client

encrypts the original MF using a secret key K to get a

MF problem, written as MFK . Later, the encrypted

MFK is given to the cloud for a result. Once the cloud

receives MFK , the computation is carried out with

software’s; then the cloud sends back the result to MFK

. The cloud also sends back a proof Γ that tries to prove

the returned result is indeed correct and the cloud does

not cheat. On receiving the returned result, the client

decrypts the returned result using the secret key K to

get the result to the original MF. Meanwhile, the client

checks whether this result is correct: if yes, accepts it;

if no, just rejects it.

Threat model. The security threats faced by

the outsourcing system model primarily come from the

behavior of the cloud. Generally, there are two levels

of threat models in outsourcing: semi-honest cloud

model and malicious cloud model. In the semi-honest

cloud model, the cloud correctly follow the protocol

specification. However, the cloud records all the

information it can access, and attempts to use this to

learn information that should remain private. While in

the malicious cloud model, the cloud can arbitrarily

deviate from the protocol specification. The malicious

cloud may just return a random result to the client to

[Jeyaseelan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[2066-2071]

save its computing resources, while hoping not to be

detected by the client. Therefore, an outsourcing

protocol in the malicious cloud model should be able

to handle result verification. In this paper, we assume

that the cloud is malicious. The proposed protocol

should be able to resist such a malicious cloud.

The Matrix Factorization Problem Model:
The matrix factorization is defined as decomposing the

original matrix into a product of factor matrices in the

form, lower triangular matrix and upper triangular

matrix. Matrix factorization maps two different

elements to a joint space of dimensionality assume the

two different elements are user and item. The matrix

explains the association [5] between item and user is

the input matrix; AB.It is quite difficult [5] to compute

the factor matrices. A well known technique called as

singular value decomposition (SVD) and gradient

descent method [5] can be used to identify factor

matrices.

Let AB be the original matrix that is factorized as A

and B matrices.

 AB=A .B

Input matrix AB of size m x n is factored as m x q and

q x n;

Matrix 1:

 A of size m x q

Matrix 2:

 B of size q x n;

Such that A X B = AB

MF protocol design:

 Since MF is very large computational task, the

clients are encouraged to use the on demand cloud

computing utility on pay per use manner. To safely

outsource their problem into

Public cloud server, the proposed scheme aims to

design a protocol which is safe, secure, robust and

efficient. The protocol design has four phases and they

are specified in orderly manner.

1. Secret random key generation.

2. MF encryption.

3. MF decryption.

4. Result verification.

Secret random key generation:

The protocol design starts with secret random key is

generated using java random secret key generator

algorithm.

Design goals. We identify the following goals

that the outsourcing protocol should satisfy.

• Correctness. If both the client and the cloud

follow the protocol honestly, the MF can be

indeed fulfilled by the cloud and the client gets a

correct result to the original MF.

• Security. The protocol can protect the privacy of

the client’s data. On one hand, given the

encrypted MFK problem, the cloud cannot get

meaningful knowledge of the client’s input data,

which is referred to as input privacy. On the other

hand, the correct result to the original MF is also

hidden from the cloud, and this is called as output

privacy.

• Robust Cheating Resistance. The correct result

from a faithful cloud server must be verified

successfully by the client. No false result from a

cheating cloud server can pass the verification

with a non-negligible probability.

• Efficiency. The local computation done by the

client should be substantially less than the

computation of the original MF on his own. In

addition, the amount of computation on

computing the encrypted MFK should be as close

as possible to that on computing the original MF.

Framework. Syntactically, a secure MF outsourcing

protocol should contain five sub-algorithms: 1) the

algorithm for key generation Key Gen, 2) the

algorithm for MF encryption MF Enc, 3) the algorithm

for solving MFK problem MF Solve, 4) the algorithm

for MF decryption MF Dec, and 5) the algorithm for

result verification Result Verify.

 One significant difference between this

framework and the traditional encryption framework

is that in this case both encryption and decryption

process occur in the client side. This eliminates the

expensive public key exchange process in the

traditional encryption framework. Therefore, this

framework is able to efficiently realize one-time-pad

type of flexibility. That is to say, Key Gen will be run

every time for a new outsourced matrix instance to

enhance security. Once we have this framework, we

just need to work out the details of these five sub-

algorithms, they are,

Protocol Construction
In this section, each part of the framework for

secure outsourcing of Matrix Factorization will be

individually solved.

[Jeyaseelan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[2066-2071]

Matrix Factorization in the Cloud

 Algorithm Procedure MFK -in-the-Cloud

 Input : Y.

Output: R= Y−1.

1: On input the encrypted matrix Y, the cloud then

invokes any matrix inversion algorithm to

compute

R= Y−1.

2: The cloud then sends matrix R back to the client.

Algorithm 1

 Matrix Factorization Encryption

The second phase of the protocol is Matrix

Factorization encryption which is used to convert the

original matrix into encrypted matrix by taking

transposition and permutations[5] on the original

matrix which makes the original information secure. If

the secret key generated in the above phase is k; then

algorithm for second phase is described as follows:

Input: secret key k and input matrix AB, m x n;

Output: encrypted matrix.

1. multiply input matrix by secret key k

 k. AB = k (AB) => (kA). B

2. Take transpose of the matrix.

 (k (AB))T = (B) T . (kA) T

3. Do permutation to swap the row elements.

 Store the first row of AB matrix in a temporary array

T having size as m*1;

 For i =2 to m

 begin

 For j=1 to n

 begin

 move: ABij-> ABi-1, j;

 end;

 end;

3. Store the value in matrix T as the last row of the

input matrix;

For j=1 to m

begin

move: t [1] [j] -> AB[m] [j];

end;

 Matrix Factorization Decryption

The input given to the Matrix Factorization solver is

MFk that produce the factor matrices C and D such as

C= (B) T and D= (kA) T

 The third phase of protocol design is decryption

of result which returns from the cloud server. The

decryption algorithm is normally the reverse of

corresponding encryption algorithm.

The following algorithm explains the decryption

procedure.

Input: the factor matrices C and D;

Output: The original factor matrices A and B

1. Change the order of multiplication;

 C.D -> D.C = > (k (AB))T = (B) T (kA) T -> (kA) T

(B) T

2. Take transpose of factor matrices.

 1st matrix: (kA) T -> kA; m x q

 2nd matrix: (B) T -> B; q x n

2.Divide all the elements of 1st matrix by secret key

k;

3.Do permutation to swap the row elements.

3.1To retrieve the first factor matrix A:

 3.1.1 store the last row element of matrix A

in an temporary array T1 of size (m x 1);

 3.1.2 for i=1 to m-1

 begin

 for j=1 to q

 begin

 move: Aij -> Ai+1,j

 end;

 end;

 3.1.3 Store the elements of T1 as the last row

of the A;

 i=m;

 for j=1 to q

 begin

 move T1ij->Aij

 end;

 3.2To retrieve the second factor matrix B;

 3.2.1Store the last row element of matrix B

in an temporary array T2 of size (q x 1);

 3.2.2 for i=1 to n-1

 begin

 for j=1 to q

 begin

 move: Bij -> Bi+1, j

 end;

 end;

[Jeyaseelan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[2066-2071]

3.2.3 Store the elements of T2 as the last row of the

B;

 i=q;

 for j=1 to n

 begin

 move T2ij->Bij

 end;

Final result is obtained .The resultant factor matrices

are A and B.

 Result verification

Input: The factor matrices and original matrix.

Output: Boolean value; true or false;

1. Boolean proofverification (matrix A, matrix B,

matrix AB)

{

 if (A . B = = AB)

 then

 return ‘True’

 else

 return ‘False’

}

 The platform as a service of cloud computing

provides a computing platform to do the

computational task.

Performance Evaluation
CLIENT SIDE OVERHEAD. The client side

overhead is generated by running four sub-algorithms:

Key Gen, MFC Enc, MFC Dec, and Result Verify. It

is evident that Key Gen takes time O(n). In MFC Enc,

applying (4) to efficiently compute Y, it only takes

time O(n2).Likewise, the time consumed by MFC Dec

is O(n2). As to Result Verify, the time is dominated by

computing R×(Xr), which takes time O(n2). CLOUD

SIDE OVERHEAD. For the cloud, its only

computation overhead is generated by running MFC

Solve. The cloud can apply any existing matrix

inversion algorithm. As mentioned before, from the

complexity point of view, matrix multiplication and

matrix inversion of square matrices are essential the

same problem, we have that the computational

overhead in the client side will be less than that in the

cloud side for a sufficiently large n. The theoretical

results indicate that the proposed protocol is able to

allow the client to outsource MF to the cloud and gain

substantial computation savings. This claim will be

further validated by our experiments in the next

subsection.

Conclusion
In this paper, we have designed a protocol for

out-sourcing of MF to a malicious cloud. We have

shown that the proposed protocol simultaneously

fulfills the goals of correctness, security (input/output

privacy), robust cheating resistance, and high

efficiency. With MF already well rooted in scientific

and engineering fields, the proposed protocol can be

deployed individually or serve as a primitive building

block, based on which some higher level secure

outsourcing protocols are constructed. We also

introduced a Monte Carlo verification algorithm to

handle result verification. Its superiority in designing

inexpensive result verification algorithm for secure

outsourcing is well demonstrated. Directions to launch

further research include: 1) establishing formal

security framework for MF outsourcing problem; 2)

adding result verification for some early protocols,

which do not handle result verification, as a counter

offensive to malicious cloud; 3) identifying new

meaningful scientific and engineering computational

tasks and then designing protocols to solve them.

Refrences
[1] Xinyu Lei, Xiaofeng Liao, Senior Member,

IEEE, Tingwen Huang, Huaqing Li, and

Chunqiang Hu “Outsourcing Large Matrix

Inversion Computation to A Public Cloud” .

IEEE Transactions On Cloud Computing,

vol. x, no. x, x 2013

[2] Cong Wang, Student Member, IEEE, Kui

Ren, Member, IEEE, Jia Wang, Member,

IEEE, and Karthik Mahendra Raje Urs,

“Harnessing the Cloud for Securely

Outsourcing Large-scale Systems of Linear

Equations”

[3] Zhengping Qiany Xiuwei Cheny Nanxi Kang\

Mingcheng Chen\ Yuan Yuz Thomas

Moscibroday Zheng Zhangyy Microsoft

Research Asia, \ Shanghai Jiaotong

0

1

2

3

4

5

6

dimension n

efficency
priorty

trade off

cheatting
resistence
priorty

[Jeyaseelan et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[2066-2071]

University, z Microsoft Research Silicon

Valley ”MadLINQ: Large-Scale Distributed

Matrix Computation for the Cloud”

[4] Sun Microsystems, Inc., “Building customer

trust in cloud computing with transparent

security,” 2009, online at

https://www.sun.com/offers/details/sun

transparency.xml.

[5] Yehuda Koren, Yahoo Research, Robert Bell

and Chris Volinsky, AT&T Labs—Research

“Matrix Factorization Techniques for

Recommender Systems” Published by the

IEEE Computer Society 0018-

9162/09/$26.00 © 2009 IEEE

[6] http://www.quuxlabs.com/blog/2010/09/mat

rix-factorization-a-simple-tutorial-and-

implementation-in-python/. Matrix equation

[7] X. Zhang, Z. Qian, Y. Ren, and G. Feng,

“Watermarking with flexible self-recovery

quality based on compressive sensing and

compositive reconstruction,” Information

Forensics and Se-curity, IEEE Transactions

on, vol. 6, no. 4, pp. 1223–1232, 2011

[8] Y. Lindell and B. Pinkas, “Secure multiparty

computation for privacy-preserving data

mining,” Journal of Privacy and

Confidentiality, vol. 1, no. 1, p. 5, 2009.

[9] R. Durstenfeld, “Algorithm 235: random

permutation,” Com-munications of the ACM,

vol. 7, no. 7, p. 420, 1964.

[10] D. E. Knuth, The art of computer

programming. addison-Wesley, 2006.

[11] R. Freivalds, “Probabilistic machines can

use less running time,” Information

Processing, vol. 77, pp. 839–842, 1977.

[12] R. Motwani and P. Raghavan, Randomized

algorithms. Cam-bridge university press,

1995.

[13] J. Camenisch, S. Hohenberger, and M.

Pedersen, “Batch verification of short

signatures,” Advances in Cryptology–

EUROCRYPT 2007, pp. 246–263, 2007.

[14] V. Strassen, “Gaussian elimination is not

optimal,” Numerische Mathematik, vol. 13,

no. 4, pp. 354–356, 1969.

[15] D. Coppersmith and S. Winograd, “Matrix

multiplication via arithmetic progressions,”

Journal of symbolic computation, vol. 9, no.

3, pp. 251–280, 1990.

